常用的扭矩控制方法有哪些
常用的扭矩控制方法有哪些
根据拉伸-屈服极限的关系图,常用的扭矩控制方法有五种
(1)扭矩控制法(T)
(2)扭矩-转角控制法(TA)
(3)屈服点控制法(TG)
(4)质量保证法(QA)
(5)扭矩斜率法
拧紧螺栓至设定的扭矩后,拧紧控制机构停止动作,其优点是较为简便,而且扭矩容易复验。
目前大多数非关键部位的螺纹联接仍使用扭矩法。


扭矩/转角控制法

扭矩—转角控制法是在扭矩控制法上发展起来的,应用这种方法,首先是把螺栓拧到一个不大的扭矩后,再从此点始,拧一个规定的转角的控制方法。它是基于的一定转角,使螺栓产生一定的轴向伸长及连接件被压缩,其结果产生一定的螺栓轴向预紧力的关系。应用这种方法拧紧时,设置初始扭矩(Ts)的目的是在于把螺栓或螺母拧到紧密接触面上,并克服开始时的一些如表面凸凹不平等不均匀因素。而螺栓轴向预紧力主要是在后面的转角中获得的。从图5中可见,摩擦阻力(图中以摩擦系数表示的)的不同仅影响测量转角的起点,并将其影响延续到*后。而在计算转角之后,摩擦阻力对其的影响已不复存在,故其对螺栓轴向预紧力影响不大。因此,其精度比单纯的拧矩法高。从图5可见,扭矩—转角控制法对螺栓轴向预紧力精度影响*大的是测量转角的起点,即图中TS所对应的S1(或S2)点。因此,为了获得较高的拧紧精度,应注意对S点的研究。
在于:扭矩控制法通常将*大螺栓轴向预紧
力限定在螺栓弹性极限的90%处,即图6中Y点处;而扭矩-转角控制法一般以Y-M区为标准,*理想的是控制在屈服点偏后。扭矩—转角控制法螺栓轴向预紧力的精度是非常高的,通过图6即可看出,同样的转角误差在其朔性区的螺栓轴向预紧力误差ΔF2比弹性区的螺栓轴向预紧力误差ΔF1要小得多。
应用转角法,螺栓的负荷可以在它的弹性变形范围内,也可以进入塑性变形范围,大多数厂家用转角法一般在塑性区。如果螺栓要进入塑性变形范围,一定要进行严格的试验或检测。
优点:受摩擦系数影响较小,可得到比较高的预紧力且预紧力的离散度较小。
缺点:需要做大量的实验和分析工作,而且几乎无法复验,如果用扭力扳手来复验的话,预紧力可能会超过原先的设定值。
屈服点控制法是把螺栓拧紧至屈服点后,停止拧紧的一种方法。它是利用材料屈服的现象而发展起来的一种高精度的拧紧方法。这种控制方法,是通过对拧紧的扭矩/转角曲线斜率的连续计算和判断来确定屈服点的。螺栓在拧紧的过程中,其扭矩/转角的变化曲线见图7。真正的拧紧开始时,斜率上升很
快,之后经过简短的变缓后而保持恒定(a_b区间)。过b点后,其斜率经简短的缓慢下降后,又快速下降。当率下降一定值时(一般定义,当其斜率下到*大值的二分之一时),说明已达到屈服点(即图7中的Q点),立即发出停止拧紧信号。

屈服点法利用了材料从弹性变形区向塑性变形区过渡时的特性,但是屈服点法同样要进行严格的试验或检测,以防螺栓和螺纹损坏或断裂。
在屈服点控制法中,预紧力的大小主要取决于紧固件的屈服强度,因此能得到较大的预紧力,预紧力的离散度也较小,而且预紧力不受摩擦系数变化的影响。
屈服点控制法要求对零件表面进行严格的处理,任何打滑和阻滞现象都会使扭矩/转角曲线偏离正常的范围从而使控制系统发出错误警告。此外对螺栓的要求也非常高:
紧固必须是专门为屈服点拧紧设计的
螺栓能达到塑性延伸
螺纹摩擦必须明显小于头部下方的摩擦
螺栓头和螺纹的材料不允许变形
(4)质量保证法
质量保证法是通过测量螺栓的伸长量来确定是否达到屈服点的一种控制方法,虽然每一个螺栓的屈服强度不一致,也会给拧紧带来误差,但其误
差一般都非常小。
在螺栓伸长法中所采取的测量螺栓伸长量的方法,一般是用超声波测量,超声波的回声频率随螺栓的伸长而加大,所以,一定的回声频率就代表
了一定的伸长量。图11就是螺栓伸长法的原理,

由于螺栓在拧紧和拧松时,用超声仪所测得的回声频率随螺栓的拧紧(伸长)和拧松(减小伸长量)而发生变化的曲线并不重合,
同一螺栓轴向预紧力的上升频率低于下降频率。这样,在用来测量螺栓的屈服点时应予以注意。该法已在日本的生产中得到应用。
扭矩斜率法是以扭矩-转角曲线中的扭矩斜率值的变化作为指标对初始预紧力进行控制的一种方法。该拧紧方法通常把螺栓的屈服紧固轴力作为控制初始预紧力的目标值。该拧紧方法一般在螺栓初始预紧力离散度要求较小并且可*大限度地利用螺栓强度的情况下使用。但是由于该拧紧方法对初始预紧力的控制与塑性区的转角法基本相同,所以,需要对螺栓的屈服点进行严格的控制。该拧紧方法与塑性区的转角法相比,螺栓的塑性即反复使用等方面出现的问题较少,有一定的优势,但是,紧固工具比较复杂,也比较昂贵。
使用测力扳手时可能会出现的问题:
同时受静态摩擦力影响
操作者使用不便(生产效率低、人机工程问题)
必须定期校准
测力扳手的误差大